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The use of perspective graphic displays that facilitate the understanding of numerical 
solutions is discussed. As a particular example from my own field, successive overrelaxation 
is used to solve a boundary value problem for gravitational initial data describing a moving 
black hole. Two techniques of data enhancement are described, and several graphic displays 
are presented which vividly reveal the detailed radial and angular dependence of the 
gravitational conformal factor. 

1. INTRODUCTION 

In recent years, significant progress has been made in developing a procedure for 
solving problems in gravitational dynamics. The basic program, as described by 
Smarr and York [l-3], requires one to choose a spacelike hypersurface, solve a set of 
initial value constraints on this surface, and then evolve this initial data as a Cauchy 
problem. Misner [4] and Lindquist [5] have solved analytically the initial value 
constraints for the problem of many stationary uncharged or charged black holes. 
Because their solutions dealt with initially stationary black holes, the momentum 
constraint was satisfied by the trivial zero solution. An analytic solution of the full 
initial value problem does not presently exist for the case of non-zero initial 
momentum. For this more general case, numerical techniques offer the best hope for 
providing initial data that can be used in future evolution calculations. However, 
interpretation of numerical results is often difficult. An especially useful tool for 
understanding such results is a perspective graphic display. Extending the work of 
York and Piran [6], this paper describes an independent numerical solution of an 
important initial value problem-that of a single moving black hole-and presents 
graphic displays of some of the results. 

Following this introduction, we state the boundary value problem to be solved and 
discuss the numerical methods used in the solution. Section 3 describes two 
techniques of data enhancement, the graphics package, and the conversion of 
spherical data to the more convenient Cartesian system. In Section 4, we present and 
discuss the graphic displays. Finally, conclusions and applications to other problems 
are given in Section 5. 
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2. NUMERICAL SOLUTION OF THE BOUNDARY VALUE PROBLEM 

The physical problem to be addressed here is that of specifying at a given instant 
certain gravitational data that describe a single moving black hole. Starting from the 
vacuum initial value equations of general relativity, Bowen and York [7] present an 
explicit closed-form solution of one of these equations, the momentum constraint. 
They then go on to describe a boundary value formulation that can determine a 
unique solution of the other initial value equation, the Hamiltonian constraint. That 
problem is 

~+&,=o for p=a 

where C2 is the three-dimensional flat-space Laplacian operator, v is the gravitational 
conformal factor, H is the source factor containing the momentum of the hole, r is 
the usual radial coordinate, and a is a constant proportional to the size of the 
momentum source. The inner boundary condition (2) is related to (in fact is derivable 
from) a special symmetry property of the conformal factor. I have elsewhere shown 
that, in the final physical geometry for this problem, a simple spherical inversion map 
is an isometry [S]. If we take a as the radius of inversion, this symmetry property can 
be written 

from which (2) follows by differentiation. Condition (4) will be used in Section 3 to 
generate data inside r = a. 

To proceed with the numerical solution of the boundary value problem (1 j(3)? we 
must specify H. Using the solution of the momentum constraint presented by Bowen 
and York, we find 

,=S_ri_ 
2 rJ Ii 1 

1,; 2+2cos’B I-4g,g ( , 
\ )I 

where P is the magnitude of the momentum of the moving hole, and 0 is measured 
from the direction of motion. It is also useful to study the numerical solution for the 
“model If’ offered by Bowen and York, 
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since this form admits an exact solution 

VI model= 1 7 (7) 

where the total energy is given in this case by E = (P’ + 4a2)‘j2. Although there is no 
angular dependence in Hmode,, it has proven valuable in testing the two-dimensional 
iteration scheme. Plots of H and Hmode, appear in Fig. 1. 

Now that we have specified the source function H in the scale Eq. (l), we address 
boundary conditions (2) and (3). Although the inner condition at r = a presents no 
problem for a numerical solution, we cannot extend the radius indefinitely to apply 
the outer condition, lim,,, v = 1. Since we expect v = 1 + E/2r + 0(1/y’), we form 
av/6’r = - E/2r2 + O(l/r3). Then ignoring O(l/r3), we find 

r 

~+&)=O for r=R, 

where R is an artificial outer boundary such that R $ a. 
We may reduce the region of integration by a factor of four if we exploit the 

angular symmetry of H and ly. Since both depend on angle only through cos’ 0, we 
obtain the boundary conditions 

a 0 -= ao at 0 = 0 and 0 = 42. 

12- 
I 

FIG. 1. The source functions H and H modc,, given by Eqs. (5) and (6j. Labeled curves are of H, with 
the angle given in degrees. The unlabeled curve at the bottom is Hmode,. Note that H for 0’ is gHimodel. 
The dimensions of H are a-‘, and (P/a) = 1 for this plot. 
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Finally we note that the entire problem is azimuthally symmetric and thus the entire 
dimension associated with 4 may be ignored by considering only the slice # = 0. Thus 
our complete value problem, appropriate for a finite two-dimensional region, is 

aw 
ao 

-0 

r 

S+&=o 

for 0 = 0 and 0 = n/2 

for r = a 

r 

S+f(y- l)=O for r=R. 

Having specified the boundaries of the region of interest, we then choose the grid 
layout. For simplicity, the spacing of grid points is chosen to be regular in both 
radial and angular variables. The radial coordinate is measured in units of a, and 
points are located from (r/a) = 1 to (r/a) = R/a = 40 in steps of 0.2. The value of the 
angular variable ranges from 0 to 0 to 0 = 42 in steps of rt/ 18 (IO”). 

Since an iteration method is used to calculate I,V at each grid point, a trial solution 
is required to get started. For a run with momentum parameter P, a crude estimate of 
the energy is E = (P’ + 4a’)‘;” (71. S’ mce the static solution with energy E is 
w = 1 + E/2r, we employ as the initial trial solution the function 

I+T&, 0) = 1 + (PI + 4)“‘/2r. 

where both P and Y are measured in units of LI. 
It remains to transform the differential system (9~(12) to finite differenced 

expressions for the matrix of grid values ‘vii. Equation (9) is approximated by a 
standard second-order centered finite difference scheme. This non-linear relation then 
applies to all interior grid points. Rather than using the boundary conditions (IO), the 
angular symmetries that led to them are employed directly by symmetrically 
extending the solution across the boundary and inserting the known values in the 
finite difference form of (9). Finally, the derivatives in boundary conditions (11) and 
(12) are approximated by a fourth-order difference scheme. Since these last 
conditions are linear, they may be solved algebraically for v/ on the radial boundaries” 

With a system of difference equations for the wiis in hand, we turn to the iterative 
calculation. The iterative method employed is successive over-relaxation (SQR) [9]* 
which is the most efficient method known and is now used by all codes that solve the 
elliptic equations arising from Einstein’s equations of general relativity [lo]. The 
entire grid is swept out updating vij values point-by-point. At each grid point in the 
interior, the neighboring values of wli that are involved in the finite-difference form of 
Eq. (9) are momentarily fixed. The value of wij is then adjusted until it satisfies the 
still non-linear relation obtained from (9). This non-linear algebraic equation is 
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solved using Newton’s method in an inner loop. Finally, the solution wii from the 
inner loop is used to immediately update the value of vii by Lioverrelaxing”: 

v “ew=~~+(l--W)vold* 

Here o is the over-relaxation or acceleration parameter which is adjusted to 
maximize convergence. For points on the radial boundaries, however, the (linear) 
boundary conditions are solved directly and applied immediately. The values on the 
boundary are not over-relaxed. 

To test the convergence and stability properties of the iteration method, the model 
Hamiltonian, Eq. (6), is. used in the non-linear term of (9). When the numerical 
solution and the known exact solution, Eq. (7), are compared for a broad range of the 
momentum P, one finds that several hundred iterations are sufficient for agreement to 
0.1% or better at all points. Thus one may be confident that the numerical solution 
obtained for the real physical source (Eq. (5)) . 1s a very good approximation to the 
actual factor satisfying (9). 

3. DATA REDUCTION 

In order to display the conformal factor from the data obtained by the iteration 
procedure, we must use symmetry conditions to continue the v function into the 
regions r < a and 7r/2 < 0 < 27~ (The azimuthal dimension continues to be 
suppressed.) For the radial extrapolation, we use the symmetry property of the 
conformal factor, Eq. (4), 

v@, @> = (a/r> v(a2/r, 0). (13) 

When we apply this symmetry to the numerical solution at radial grid points with 
r > a, we obtain by inversion the solution for interior points with r < a. Extrapolation 
to r = O.la is sufficient for a good graphics display. Since Eq. (13) involves a non- 
linear map, we note that the interior radial grid points are no longer evenly spaced. 

Although the global features of the conformal factor are apparent from a direct 
display, some of the fine points are not. To reveal certain subtleties of the solution, 
further data reduction is necessary. Two particular processes were utilized in this 
problem, each of which required forming ratios. To exhibit the radial dependence, the 
well-known conformal factor for a stationary bIack hole was divided by the iterated 
solution for a moving hole of the same total energy. In order to mask the strong 
radial dependence and reveal details of the angular dependence, the ratio of the 
conformal factor to its value along the line of motion (vI(r, @)/r&r, 0)) was formed. 

To display the conformal factor and the divided data just described, 1 used the 
Program ASPEX [ 111. Originally develped to generate maps of various geographic 
data, ASPEX can be used quite generally to plot functions of two variables. To use 
it, one must enter data in a rectangular matrix, in which the entries represent function 
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values at regular intervals. Various options for grid size, viewing angles, and vertical 
scaling may then be selected for display purposes. 

Since my calculations produced v-values at regular intervals in polar coordinates. I 
had to recast my data into a rectangular (z-x) grid. A simple four-point linear inter- 
polation to a relatively small square grid with spacing 0.1~ turned out to provide 
sufficiently accurate graphic displays. The interpolation was performed only in the 
first quadrant, since only there were original data and divided data available. Recaii, 
however? that v depends on angle only through cos’ 8, a reflection symmetry. Thus 
the interpolated data were merely reflected through the ?c- and z-axes into the other 
quadrants. 

The value at the origin presents a problem. ASPEX cannot simply leave out the 
origin (or any other point in the grid) when plotting; nor can it show w‘s true infinity 
there. This problem was solved by requiring that I,Y(Z = 0, s = 0) = w(z = 0.1, .Y = 0). 
Thus, although the interpolated data are physically inaccurate right at the origin the 
displays are continuous. 

4. GRAPHIC DISPLAYS 

The results of the numerical calculation are displayed in three different ways in 
order to highlight the various aspects of the solution. All use Eq. (8) for H as the 
source with P = 10 chosen as a typical momentum. These results appear in Figs. 2. 3. 
and 4. 

Figure 2 shows the conformal factor ly as a function of position in the region 
near the origin. As one might expect, w depends strongly on the radial distance, and 
diverges at the origin. It is also clear that the strong angular dependence in the source 
function H (see Fig. 1) is almost completely absent in the scale factor v. In fact, from 
Fig. 2 alone, the solution appears to be isotropic and indistinguishable from 

~Schwarz = I + E/21, the conformal factor for a static Schwarzschild black hole of rest 
energy E. 

When we examine Fig. 3, the difference between li/ and vscha,nrr is in fact quite 
apparent. The figure shows the ratio ~~~~~~~~~~~~ where the E used in the 
Schwarzschild conformal factor is simply the total energy of the moaing hole. (This 
energy is obtained from the surface integral E = --(l/277) $ Vv. dS performed 
numerically at the outer boundary.) Thus Fig. 3 compares a moving black hole with a 
Schwarzschild hole of the same energy. 

Figure 3 makes it clear that the radial dependence of I,U is in fact quite different 
from the conformal factor of a static hole. While they both approach 1 at large 
distances, I,Y increases more slowly as the origin is approached. This can be 
understood when one looks directly at the differential equation (9), and assumes that 
any contribution to the Laplacian is almost entirely due to radial variation, If v/ 
behaves like 1 + Ar” near the origin, then V’w = (n + l)(n) At-+’ so that II > -1 1s 
needed for V2v to be negative as required in Eq. (9). Thus w cannot increase as fast 
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FIG. 2. The conformal factor v/, solution of Eq. (9), for (P/a) = 10. The plot shows a square region 
of side 5a centered on the origin. The value of v/ on this plot ranges from 1.75 at the corners to 13.9 
near the center. Grid lines are drawn at intervals of 0.2~1, parallel to the z- and x-axes. The positive z 
direction (the direction in which the black hole is moving) is indicated by an arrow. 

FIG. 3. The ratio v SChWaTz/~ for (P/a) = 10. The plot shows the same square domain as in Fig. 2. 
Here the value of the ratio ranges from 1.46 at the edges to 4.10 near the center. The positive z-direction 
is indicated with an arrow. 
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FIG. 4. The ratio ~(r. O)/yl(r, 0 = 0) for (&a) = 10. The plot shows the same square domain as in 
Fig. 2. The vertical scale is greatly exaggerated as the range of this ratio is only from 0.9886 to 1.0042. 
The minimum values of the ratio occur in two deep valleys which are symmetrical!y located between the 
hills on either side of the center reference line. the z axis. 

as 1 + E/2r as the origin is approached. However. this effect is virtually impossible 
to detect from the display of undivided data, Fig. 2. 

Finally, let us turn our attention to Fig. 4, which shows the ratio 
t+~(r, O)/ll/(r, 0 = 0). In this plot we factor out the radial dependence and focus on the 
angular variations of the conformal factor. Since we have set P along the z-axis and 
also measure 0 from this direction, the value of y along the z-axis is chosen as the 
reference. The most striking feature is that aw/a@ changes sign twice along any radial 
line (except the x- and z-axes, where &,Y/LW is zero by construction). Near I^ = CL w is 
maximum at 0 = 90°, but at about Y = 1.8~7, the curve turns over and i,~ (0 = 0’) 
becomes the maximum. Since angular variation is not affected by the inversion map, 
we find that the curve turns over again at about r = a’l(1.8~) z 0.550, in between the 
hills of Fig. 4. Thus, there are two circles (r - 1.8~ and r z 0.55~~) on which v is 
approximately constant. This effect went completely unnoticed [ 121 until displays 
like Fig. 4 were in hand. 

5. CONCLUSIONS 

The work reported here, in addition to its intrinsic value as the solution of an 
important problem in gravitational physics, presents three significant findings in the 
application of numerical methods and computer graphics to physical problems. The 
first is that the general method of successive over-relaxation (SOR) can easily be 
adapted to non-linear elliptic equations with unusual boundary or symmetry 
conditions. To make a problem suitable for an iterative calculation. a Dirichlet 
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condition at infinity can often be replaced with a Robin condition at a large but finite 
distance, such as Eq. (8). The inner boundary condition for this problem, Eq. (2), is 
an unusual mixed condition (not a Robin condition since the unit normal points into 
instead of out of the volume of integration) that nontheless can be rewritten to 
express the boundary values in terms of those in the interior. Finally, certain 
symmetries can often be employed directly in the finite-differenced form of the elliptic 
operator, as was done for the reflection symmetries here, and thus eliminate extra 
boundary conditions. The tests with Hmode, show SOR to be a fast, efficient, and 
accurate method for these problems. 

The second important finding is that physicists at small colleges or universities, 
who have limited knowledge of or access to sophisticated graphics software, can still 
produce perpective displays that are valuable guides in research. The ASPEX 
program at Bucknell runs on a Honeywell DPS/CP6, but it is compatible with any 
system that supports FORTRAN, has minimal graphics capability (DRAW, MOVE, 
PAGE) and offers 128K memory or sufficient overlay ability. Programs that make 
perpective drawings in polar coordinates do not seem to be readily available. 
Although the ASPEX program was designed for another purpose, it and other 
Cartesian-based perspective drawing packages can be adapted readily to display 
results in black-hole physics, scattering or potential theory, and other problems in 
which polar coordinates are the most natural. 

The third significant aspect of this work that may be applicable to other problems 
concerns the modification of the conformal factor before display. As mentioned in 
Section 4, certain features of a solution to a new problem remain hidden in a straight 
display. Averaging, comparing to known special cases (as in Fig. 3), and dividing out 
approximate symmetries (as in Fig. 4). are all valuable tools for revealing subtle 
features not previously apparent. 
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